韩晓阳,孟相如,康巧燕,等. 2019. 基于二分图最优匹配的虚拟网络映射算法[J]. 系统工程与电子技术,41(12):2891-2898.
(Han X Y, Meng X R, Kang Q Y, et al. 2019. Virtual network mapping algorithm based on bipartite graph optimal matching[J].
Systems Engineering and Electronics,41(12):2891-2898.)
李昌华,李智杰,高阳. 2017. 图谱和Kuhn-Munkres算法在图匹配中的应用研究[J]. 计算机工程与科学,39(10):1896-1900.
(Li C H, Li Z J, Gao Y. 2017. Research on the application of graph matching and kuhn-munkres algorithm[J]. Computer Engineering
& Science,39(10):1896-1900.)
李勇,吴京鹏,张钟颖,等. 2022. 融合快速注意力机制的节点无特征网络链路预测算法[J]. 计算机科学,49(4):43-48.
(Li Y, Wu J P, Zhang Z Y, et al. 2022. Link prediction algorithm for node uncharacterized network with fast attention
mechanism[J]. Computer Science,49(4):43-48.)
梁少星. 2015. 基于语义关联的实例相似度计算方法及应用研究[J]. 现代情报,35(8):151-156.
(Liang S X. 2015. Research on computation method of instance similarity based on semantic association and its application[J].
Journal of Modern Information,35(8):151-156.)
刘自强,许海云,罗瑞,等. 2019. 基于主题关联分析的科技互动模式识别方法研究[J]. 情报学报,38(10):997-1011.
(Liu Z Q, Xu H Y, Luo R, et al. 2019. Research on scientific and technological interaction patterns based on topic relevance
analysis[J]. Journal of the China Society for Scientific and Technical Information,38(10):997-1011.)
秦晓慧,乐小虬. 2015. 基于LDA主题关联过滤的领域主题演化研究[J]. 现代图书情报技术,(3):18-25.
(Qin X H, Yue X Q. 2015. Research on domain topic evolution based on LDA topic association filtering[J]. New Technology
of Library and Information Service,(3):18-25.)
石川,王睿嘉,王啸. 2022. 异质信息网络分析与应用综述[J]. 软件学报,33(2):598-621.
(Shi C, Wang R J, Wang X. 2022. Analysis and application of heterogeneous information networks[J]. Journal of Software,33(2):
598-621.)
谭珍琼,姜文君,任演纳,等. 2022. 基于二分图的个性化学习任务分配[J]. 计算机科学,49(4):269-281.
(Tan Z Q, Jiang W J, Ren Y N, et al. 2022. Personalized learning task allocation based on bipartite graph[J]. Computer
Science,49(4):269-281.)
王方洋,刘玉铭. 2021. 针对带约束匹配搜索的扩展Kuhn-Munkres算法[J]. 北京师范大学学报(自然科学版),57(2):167-172.
(Wang F Y, Liu Y M. 2021. Extended kuhn-munkres algorithm for constrained matching search[J]. Journal of Beijing Normal
University (Nature Science),57(2):167-172.)
王恒,段思勰,谢鑫. 2022. 基于信息年龄优化的多信道无线网络调度方法[J]. 电子与信息学报,44(2):702-709.
(Wang H, Duan S X, Xie X. 2022. Multi-channel wireless network scheduling method based on Information age optimization
[J]. Journal of Electronics & Information Technology,44(2):702-709.)
熊旭东,杜圣东,夏琬钧,等. 2021. 基于二分图卷积表示的推荐算法[J]. 计算机科学,48(4):78-84.
(Xiong X D, Du S D, Xia W Y, et al. 2021. Recommendation algorithm based on bipartite graph convolution representation[J].
Computer Science,48(4):78-84.)
殷媛媛. 2012. 基于论文专利引证关系的科学技术互动研究:以立体显示为实证分析[J]. 图书情报工作,56(16):65-70+74.
(Yin Y Y. 2012. Interactive study of science and technology based on citation relations between papers and patents: Case
study of 3D display[J]. Library and Information Service,56(16):65-70+74.)
张雪英,闾国年,叶鹏. 2020. 大数据地理信息系统:框架、技术与挑战[J]. 现代测绘,43(6):1-8.
(Zhang X Y, Lv G N, Ye P. 2020. Big data GIS: Frameworks, technologies and challenges[J]. Modern Surveying and Mapping,43(6):1-8.)
周敏,王红春,高金萍,等.
2018. 基于ArcGIS API for JavaScript的森林抚育成效监测专题图研究[J]. 测绘与空间地理信息,41(1):
26-29.
(Zhou M, Wang H C, Gao J P, et al. 2018. Study on thematic map of forest tending effectiveness monitoring based on ArcGIS
API for JavaScript[J]. Geomatics & Spatial Information Technology,41(1):26-29.)
朱桂龙,李兴耀. 2019. AI领域基础科学网络对技术创新网络影响研究[J]. 科学学研究,37(3):517-525.
(Zhu G L, Li X Y. 2019. Research on the influence of basic science network in AI field on technological innovation network[J].
Studies in Science of Science,37(3):517-525.)
Agahi H. 2020. A generalized hellinger distance for choquet integral[J]. Fuzzy Sets and Systems,396:42-50.
Ba Z, Liang Z. 2021. A novel approach to measuring science-technology linkage: From the perspective of knowledge network
coupling[J]. Journal of Informetrics,15(3):101167.
Blondel V D, Guillaume J-L, Lambiotte R, et al. 2008. Fast unfolding of communities in large networks[J]. Journal of Statistical
Mechanics: Theory and Experiment,10:10008.
Breschi S, Catalini C. 2010. Tracing the links between science and technology: An exploratory analysis of scientists' and inventors'
networks[J]. Research Policy,39(1):14-26.
Chen J, Chen Y, He Y, et al. 2022. A classified feature representation three-way decision model for sentiment analysis[J].
Applied Intelligence,52(7):7995-8007.
Chen X, Ye P, Huang L, et al. 2023. Exploring science-technology linkages: A deep learning-empowered solution[J]. Information
Processing & Management,60(2):103255.
Chen Y, Yao J. 2021. Sentiment analysis using part-of-speech-based feature extraction and game-theoretic rough sets[J]. 2021
International Conference on Data Mining Workshops (ICDMW),110-117.
Choudhury N, Faisal F, Khushi M. 2020. Mining temporal evolution of knowledge graphs and genealogical features for literature-based
discovery prediction[J]. Journal of Informetrics,14(3):101057.
Du J, Li P, Guo Q, et al. 2019. Measuring the knowledge translation and convergence in pharmaceutical innovation by
funding-science-technology-innovation linkages analysis[J]. Journal of Informetrics,13(1):132-148.
Elshaer M E A, Wisdom S, Mishra T. 2019. Transfer learning from sound representations for anger detection in speech[J].
Arxiv Preprint Arxiv: 1902.02120.
Feng S, Li H, Qi Y. 2023. How to detect the sleeping beauty papers and princes in technology considering indirect citations[J].
Journal of Informetrics,17(3):101431.
Gao Q, Huang X, Dong K, et al. 2022. Semantic-enhanced topic evolution analysis: A combination of the dynamic topic
model and word2vec[J]. Scientometrics,127(3):1543-1563.
Guimerà R, Sales-Pardo M, Amaral L N. 2007. Classes of complex networks defined by role-to-role connectivity profiles[J].
Nature Physics,3(1):63-69.
Hassani Monfared K, Mallik S. 2016. Spectral characterization of matchings in graphs[J]. Linear Algebra and Its Applications,
496:407-419.
Huang L, Chen X, Zhang Y, et al. 2022. Identification of topic evolution: network analytics with piecewise linear representation
and word embedding[J]. Scientometrics,127(9):5353-5383.
Jung S, Yoon W C. 2020. An alternative topic model based on common interest authors for topic evolution analysis[J]. Journal
of Informetrics,14(3):101040.
Kamath U, Liu J, Whitaker J. 2019. Deep Learning for NLP and Speech Recognition[M]. Cham,Switzerland: Springer.
Kang Y, Cai Z, Tan C W, et al. 2020. Natural language processing (NLP) in management research: A literature review[J].
Journal of Management Analytics,7(2):139-172.
Ke Q. 2020. An analysis of the evolution of science-technology linkage in biomedicine[J]. Journal of Informetrics,14(4):
101074.
Kim J, Jun S, Jang D, et al. 2018. Sustainable technology analysis of artificial intelligence using Bayesian and social network
models[J]. Sustainability,10(1):115.
Li Y, Chen Y, Wang Q. 2021. Evolution and diffusion of information literacy topics[J]. Scientometrics,126(5):4195-4224.
Li X, Zhao D, Hu X. 2020. Gatekeepers in knowledge transfer between science and technology: An exploratory study in
the area of gene editing[J]. Scientometrics,124(2):1261-1277.
Maheshwari G, Trivedi P, Sahijwani H, et al. 2017. Simdoc: Topic Sequence Alignment Based Document Similarity Framework[C].
In Proceedings of the Knowledge Capture Conference:1-8.
Meindl B, Ayala N F, Mendonça J, et al. 2021. The four smarts of Industry 4.0: Evolution of ten years of research and future
perspectives[J]. Technological Forecasting and Social Change,168:120784.
Mueller J, Thyagarajan A. 2016. Siamese Recurrent Architectures for Learning Sentence Similarity[C]. In Proceedings of the
Thirtieth AAAI Conference on Artificial Intelligence:2786-2792.
Narin F, Hamilton K S, Olivastro D. 1997. The increasing linkage between U.S. technology and public science[J]. Research Policy,26:317-330.
Newman-Griffis D, Lehman J F, Rosé C, et al. 2021. Translational NLP: A New Paradigm and General Principles for Natural
Language Processing Research[C]. Association for Computational Linguistics, NIH Public Access:4125.
Pan M, Wang J, Huang J, et al. 2022. A probabilistic framework for integrating sentence-level semantics via BERT into
pseudo-relevance feedback[J]. Information Processing & Management,59(1):102734.
Peters M, Neumann M, Iyyer M, et al. 2018. Deep Contextualized Word Representations[C]. In Proceedings of the 2018
Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies:
2227-2237.
Qi Y, Zhu N, Zhai Y, et al. 2018. The mutually beneficial relationship of patents and scientific literature: Topic evolution in
nanoscience[J]. Scientometrics,115(2):893-911.
Ranaei S, Suominen A, Porter A, et al. 2020. Evaluating technological emergence using text analytics: Two case technologies
and three approaches[J]. Scientometrics,122(1):215-247.
Roach M, Cohen W. 2013. Lens or prism? Patent citations as a measure of knowledge flows from public research[J].
Management Science,59(2):504-525.
Roh T, Yoon B. 2023. Discovering technology and science innovation opportunity based on sentence generation algorithm[J].
Journal of Informetrics,17(2):101403.
Tian Y, Li G, Mao J. 2023. Predicting the evolution of scientific communities by interpretable machine learning approaches[J].
Journal of Informetrics,17(2):101399.
Tijssen R J W. 2001. Global and domestic utilization of industrial relevant science: Patent citation analysis of science-technology
interactions and knowledge flows[J]. Research policy,30(1):35-54.
Wang J, Xu B, Zu Y. 2021. Deep Learning for Aspect-Based Sentiment Analysis[C]. 2021 International Conference on Machine
Learning and Intelligent Systems Engineering (MLISE), IEEE:267-271.
Wang Y, Zhang C. 2020. Using the full-text content of academic articles to identify and evaluate algorithm entities in the
domain of natural language processing[J]. Journal of Informetrics,14(4):101091.
Valejo A, de Oliveira M C F, Geraldo Filho P R, et al. 2018. Multilevel approach for combinatorial optimization in bipartite
network[J]. Knowledge-based systems,151:45-61.
Venugopal V, Sahoo S, Zaki M, et al. 2021. Looking through glass: Knowledge discovery from materials science literature
using natural language processing[J]. Patterns,2(7):100290.
Xu H, Yue Z, Pang H, et al. 2022. Integrative model for discovering linked topics in science and technology[J]. Journal of
Informetrics,16(2):101265.
Xu S, Li L, An X, et al. 2021. An approach for detecting the commonality and specialty between scientific publications
and patents[J]. Scientometrics,126(9):7445-7475.
Yoon S, Byun S, Jung K. 2018. Multimodal Speech Emotion Recognition Using Audio and Text[C]. 2018 IEEE Spoken Language
Technology Workshop (SLT), IEEE:112-118.
Zhang Y, Lu J, Liu F, et al. 2018. Does deep learning help topic extraction? A kernel k-means clustering method with
word embedding[J]. Journal of Informetrics,12(4):1099-1117.
Zhang Y, Porter A L, Hu Z, et al. 2014. "Term clumping" for technical intelligence: A case study on dye-sensitized solar
cells[J]. Technological Forecasting and Social Change,85:26-39.
Zhou H, Sun G, Fu S, et al. 2021. Internet financial fraud detection based on a distributed big data approach with Node2vec[J].
IEEE Access,9:43378-43386.
|